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Abstract

This paper proposes a simple modification of the variable reconstruction process within finite volume schemes to allow
significantly improved resolution of low Mach number perturbations for use in mixed compressible/incompressible flows.
The main advantage is that the numerical method locally adapts the variable reconstruction to allow minimum dissipation
of low Mach number features whilst maintaining shock capturing ability, all without modifying the formulation of the
governing equations. In addition, incompressible scaling of the pressure and density variations are recovered. Numerical
tests using a Godunov-type method demonstrate that the new scheme captures shock waves well, significantly improves
resolution of low Mach number features and greatly reduces high wave number dissipation in the case of homogeneous
decaying turbulence and Richtmyer–Meshkov mixing. In the latter case, the turbulent spectra match theoretical predic-
tions excellently. Additional computational expense due to the proposed modification is negligible.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Increasing computational power and improvements in numerical methods has meant that simulations of
compressible flow configurations are now at such high resolution that it is increasingly important to capture
relatively low Mach number features with the same compressible scheme. An example of such combined flows
could include a super-critical aerofoil with a turbulent wake, shock-induced shear instabilities, or Rayleigh–
Taylor instabilities.

In a recent paper [1], it was demonstrated that the leading order kinetic energy dissipation rate in a finite
volume Godunov scheme increases as one over the Mach number. For the second-order of accuracy in space
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‘Monotone Upstream-centred Schemes for Conservation Laws’ (MUSCL) method employing the van Leer
limiter it was shown that the leading order kinetic energy dissipation rate �VL can be written as
�VL ¼ Dx2

12
uuxuxx þ

Dx3a
24
ð3u2

xx þ ð2C � 3ÞuxuxxxÞ; ð1Þ
where u and a are the velocity normal to the cell interface and speed of sound, respectively; ð:Þx indicates a
derivative with respect to the direction normal to the cell interface; C is the Courant–Friedrich–Levy (CFL)
number and Dx is the cell length (grid spacing). The dissipation rate is third-order in Dx as although the
van Leer limiter is second-order accurate, the difference between the left and right extrapolated quantities
at the cell interface is third-order. The key observations regarding this result is that the dissipation is propor-
tional to the speed of sound and the magnitude of the velocity derivatives squared at leading order. Thus, any
low Mach number features are heavily dampened by the numerical scheme.

Taking this into account, it has become important to understand the behaviour of compressible schemes
not only in the traditional sense of resolving sharp discontinuities where the flow properties change slowly
between one discontinuity and the next, but also in regions of continuous smooth change. This could be across
a single vortex or in a fully turbulent flow field, where there are significant differences in flow properties in the
space of several cells throughout the flow field.

The modification proposed in this paper is intended for use in flows with both compressible and low Mach
number features, such that the time step size is not constrained by the low Mach number features. It includes a
simple local modification to the reconstruction process which effectively removes the Mach number depen-
dence of the leading order dissipation rate of kinetic energy, hence significantly improving the resolution of
low Mach number portions of a compressible flow. It is applied in this paper to a Godunov-type method, how-
ever, in principle there is no reason why it cannot be extended to any compressible method which employs a
reconstruction phase. The main feature of the modified numerical method proposed here is that it locally

adapts the reconstruction method to allow good resolution of low Mach number features and shocks at
the same time without modifying the formulation of the governing equations. The modification requires neg-
ligible additional computational expense.

The layout of this paper is as follows. Section 2 proposes a simple modification of the limiting method
applied only to the velocity jumps across the cell interface. It is shown analytically that with the modification
the leading order dissipation rate is constant as the Mach number tends to zero, instead of tending to infinity
as with the original scheme. This method has been implemented in conjunction with a fifth-order in space and
third-order in time MUSCL-based finite volume Godunov method, which is also detailed in Section 2. The
original fifth-order method and the modified scheme are applied to several numerical testcases in Section 3.
These testcases serve two purposes, firstly that the proposed modification does not compromise the shock cap-
turing capability of the numerical method, and secondly that there is a significant improvement in resolution
at low Mach number. Shock capturing capability is demonstrated via the Sod and Noh shock tube tests, and
the simulation of advection via a weak acoustic wave in Section 3.1. Simulations of a two-dimensional Kelvin–
Helmholtz instability in Section 3.2 demonstrate clearly that the modified reconstruction method extends the
ability of the Godunov method to Mach numbers as low as 10�4 and recovers the expected M2 scaling of pres-
sure and density fluctuations. Two complex three-dimensional test cases are detailed in Section 3.3. The mod-
ified scheme is shown to significantly reduce dissipation at the high wave number modes in homogeneous
decaying turbulence. It is then applied to a high resolution simulation of the Richtmyer–Meshkov instability,
where the turbulent kinetic energy spectra are in excellent agreement with theoretical predictions, especially
considering the lack of an explicit subgrid scale model. Finally, Section 4 presents the conclusions drawn from
the present study and discusses the direction of future work.
2. Numerical method

2.1. Base numerical scheme

This paper is concerned with the simulation of the Euler equations, where viscosity is assumed negligible
(Re!1). The discretisation of the convective fluxes in each principal direction is obtained using the one-
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dimensional counterpart of the three-dimensional compressible Euler equations,1 e.g. for the flux E the follow-
ing system is used,
1 Th
oU

ot
þ oE

ox
¼ 0; ð2Þ
where
U ¼ q; qu; qv; qw; E½ �T; ð3Þ

E ¼ qu; qu2 þ p; quv; quw; ðE þ pÞu
� �T

; ð4Þ
E ¼ qeþ 0:5qðu2 þ v2 þ w2Þ ð5Þ
and q, e, u, v, w are the density, specific internal energy per unit volume and Cartesian velocity components,
respectively. Throughout this paper it is assumed that the fluid satisfies the ideal gas equation of state
p ¼ qeðc� 1Þ; ð6Þ

where c is the ratio of specific heats. The Kelvin–Helmholtz and Richtmyer–Meshkov simulations also advect
a passive scalar to track the two gas components, assumed to be miscible. The fluxes are obtained by solving
the Riemann problem at the cell interface using left and right limited quantities. In this paper the HLLC
approximate Riemann solver is employed as detailed in Toro [2]. Higher order accuracy is achieved using
MUSCL extrapolation [3],
PL
iþ1=2 ¼ Pi þ

1

2
/limðrlim;LÞðPi � Pi�1Þ; ð7Þ

PR
iþ1=2 ¼ Piþ1 �

1

2
/limðrlim;RÞðPiþ2 � Piþ1Þ; ð8Þ
where P is the vector of cell averaged primitive variables and the cells are labelled by the integer i. Also,
rlim;L
i ¼ Piþ1 � Pi

Pi � Pi�1

; rlim;R
i ¼ Pi � Pi�1

Piþ1 � Pi
: ð9Þ
The fifth-order limiter proposed by Kim and Kim [4] is employed
U�M5;L ¼
�2=rlim;L

i�1 þ 11þ 24rlim;L
i � 3rlim;L

i rlim;L
iþ1

30
; ð10Þ

U�M5;R ¼
�2=rlim;R

iþ2 þ 11þ 24rlim;R
iþ1 � 3rlim;R

iþ1 rlim;R
i

30
; ð11Þ
where monotonicity is maintained by limiting the above extrapolations using
/lim
M5;L ¼maxð0;minð2; 2rlim;L

i ;U�M5;LÞÞ; ð12Þ
/lim

M5;R ¼maxð0;minð2; 2rlim;R
i ;U�M5;RÞÞ: ð13Þ
This completes the description of the standard fifth-order method which will be denoted as ‘M5’ through-
out this paper. The fifth-order method gives significantly better resolution than typical second-order schemes,
for example, in the Sod shock tube case the extent of diffusion of the contact surface is typically reduced by
one third compared to MUSCL with the second-order van Leer limiter.

As shown by Guillard et al. [5] the scaling of the pressure differences is incorrect at low Mach number for
the standard Godunov scheme. This can be shown by examining the solution to the Riemann problem for the
interface pressure, where
p ¼ p þM
2

ffiffiffiffiffiffiffiffi
cpq
p

Du ð14Þ
at the cell interface once the Riemann problem is solved. The theoretical analysis in Thornber et al. [1] dem-
onstrated that this is caused by the specification of an artificially large velocity jump at the cell interface when
using piecewise constant variable extrapolation.
e discretised flux derivatives are summed and then advanced in time obtained using a Runge–Kutta scheme.



4876 B. Thornber et al. / Journal of Computational Physics 227 (2008) 4873–4894
The solution to this problem can be approached in two different ways. One method would be to modify the
Riemann solver itself in an attempt to compensate for the strength of the acoustic waves. This approach would
lead to a preconditioned method such as that proposed by Guillard et al [5], or a modification of the wave
strengths in the Roe scheme as suggested by Thornber and Drikakis [6]. However, a second approach is to
consider that the Riemann solver is acting upon artificially large jumps in the primitive variables. These jump
sizes have been determined through purely mathematical reasoning (i.e. via extrapolation at a specified order
of accuracy of cell centred quantities) without regard for the physical nature of the flow being simulated. In
this paper it is proposed to modify the extrapolated or ‘limited’ quantities in order to take into account the
flow physics at low Mach numbers.

2.2. Modified reconstruction method

As has been demonstrated analytically in [1], the kinetic energy dissipation rate can be gained by analysis of
the generation of entropy over a single time step, using the Taylor series expansion of the extrapolated vari-
ables. This is based on the observation that in the absence of strong thermal conduction, the generation of
entropy change by temperature is equal to the dissipation of kinetic energy.

The Taylor series expansion of MUSCL reconstruction using the M5 interpolation method on the vector of
cell averaged primitive variables P gives
ePðxÞ ¼ Pi þ Dx
2

Pi
x þ

Dx2

12
Pi

xx �
Dx4

720
Pi

xxxx þ
Dx5

60
Pi

xxxx þ . . . ; ð15Þ
where Pi indicates functions evaluated at the cell centre. The exact expansion from the cell averaged quantity
to the continuous function gives
PðxÞ ¼ Pi þ Dx
2

Pi
x þ

Dx2

12
Pi

xx þ
Dx2

12
Pi

xx �
Dx4

720
Pi

xxxx þOðDx6Þ; ð16Þ
confirming that the extrapolation method is fifth-order accurate. From this point on the superscripts ð:Þi will
be omitted for clarity. It was shown in [1] that the leading order dissipation rate arises due to the velocity jump
normal to the cell interface. Thus, for simplicity, a flow field consisting of constant density, pressure and shear
velocities but continuously varying normal velocity component u is considered. The following derivation is
complex even for first-order in time and space methods, hence following verification of the methodology (de-
tailed in [1]), a Mathematica script was used for the analysis. This Mathematica script is included in Appendix,
so that interested readers can repeat the analysis.

The fluxes at the iþ 1=2 and i� 1=2 interfaces are computed from the Taylor series expansion of the M5
extrapolation. These are then evolved at first-order in time and the change of entropy over the time step com-
puted. Next, this process was repeated using the exact solution at the cell interfaces (i.e. the same process, but
with the exact Taylor series expansion). The leading order change in entropy in the discrete solution with van
Leer limiting is then subtracted from the exact solution, giving the kinetic energy dissipation rate due to the
errors in the spatial discretisation. Remarkably, this consists of only a single term
�M5 ¼ Dx5

60
auxuxxxxx þH:O:T: ð17Þ
This term is proportional to Dx5 as expected from the leading order of the difference between the left and
right quantities in the expansion of the limiting function. Additionally, the dissipation rate increases with
speed of sound a, as was previously demonstrated for the van Leer limiter [1].

A simple solution to the problem of the excessive numerical dissipation is sought by modifying the velocity
jump at the cell interface by a function z, where the reconstructed velocities u are now defined by
uL;M5þLM ¼
uL þ uR

2
þ z

uL � uR

2
;

uR;M5þLM ¼
uL þ uR

2
þ z

uR � uL

2
: ð18Þ



B. Thornber et al. / Journal of Computational Physics 227 (2008) 4873–4894 4877
Repeating the above analysis for the new modified velocity extrapolation given by Eq. (18) yields,
�M5þLM ¼ Dx5

60
zauxuxxxxx þH:O:T:; ð19Þ
where H:O:T: are higher order in terms of spatial derivative, but lower order in terms of speed of sound. It can
be seen that by choosing z ¼ minðM local; 1ÞÞ, M local ¼ maxðML;MRÞ the leading order dissipation rate becomes
�M5þLM ¼ Dx5

60
minðjuj; aÞuxuxxxxx þH:O:T: ð20Þ
This ensures that the dissipation does not exceed that of the original scheme and reverts to the standard
upwind form in supersonic flows. Several other forms of the function z have been investigated, including qua-
dratic functions of M, varying the cut-off Mach number and the linear rate of decrease of z with respect to
Mach number. However, as well as being the simplest, the form proposed here also gives the best results in
terms of uniformity of dissipation at low Mach number in numerical test cases.

The new treatment of the velocity jumps can be considered more ‘realistic’, in that the standard Godunov
method sets up artificially large jumps which would not be present in a low Mach number flow field. It can also
been seen as a progressive central differencing of the velocity components as Mach number tends to zero. The
left and right densities or pressures are not modified, as this will cause excessive diffusion in stationary contact
surfaces, which is not desirable. Importantly, as the sign of the fifth derivative is the same as the sign of the
first derivative, the leading order term is still absolutely dissipative locally. A key observation is that the recon-
struction is modified based on the local properties of the flow field, hence the same governing equations are
solved throughout the domain.

By assuming that the flow field in subsonic and consists of a single sinusoidal perturbation, where
uðxÞ ¼ ~u sinðkxÞ and k ¼ 1=nDx, the dissipation rate can be written as
�M5þLM � 1

60n6

j~uj3

Dx
; ð21Þ
which shows a similar functional form to Kolmogorov’s four-fifths law (which gives � /j uj3=l), whereas the
standard method gives a dissipation rate of the form � / u2a=Dx. This paper includes some fully turbulent test
cases to investigate if this functional change in the dissipation rate improves performance in the framework of
Implicit Large Eddy Simulation. From the above it is clear that the dissipation rate decreases steeply as n
increases (as the wavelength of the mode under consideration increases) as is expected of a higher order
method.

The leading order dissipation rate gives increasing entropy as long as the standard CFL criteria is held, thus
the numerical method does not suffer the severe instability of preconditioned methods when used in conjunc-
tion with explicit time stepping [7]. Additionally, substituting the modified velocity jump according to Eq. (18)
into Eq. (14) recovers the expected M2 scaling of the pressure and density variations. This numerical method is
denoted ‘M5+LM’ throughout this paper.

It should be noted that not all interpolation methods can be modified in this way. A similar modification
applied to the van Leer limiter gives a leading order truncation error
�VLþLM ¼ Dx2

12
uuxuxx þ

Dx3

12
Cauxuxxx; ð22Þ
demonstrating that one of the leading order terms still increases with speed of sound.
Finally, third-order accurate Runge–Kutta time stepping method is employed [8]
U 1
i ¼ Un

i þ
1

2

Dt
Dx

f ðUn
i Þ; ð23Þ

U 2
i ¼ Un

i þ
1

2

Dt
Dx
½f ðU 1

i Þ�; ð24Þ

Unþ1
i ¼ 1

3
2U 2

i þ U n
i þ

Dt
Dx
½f ðU 2

i Þ þ f ðU 1
i Þ�

� �
; ð25Þ
where f ðU n
i Þ indicates the net flux into the cell evaluated using the array of conserved variables at time n in cell

position i (see also [9]). This has an extended stability region to a theoretical limit of CFL ¼ 2.
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3. Test cases

Several test cases are now presented to examine numerically the properties of the modified reconstruction
method, and to verify the results of the theoretical analysis within the previous section. Firstly, one-dimen-
sional problems are employed to verify that the modification does not compromise the ability of the scheme
to capture shock waves, and to resolve acoustic waves. Next, a two-dimensional, single mode Kelvin–Helm-
holtz instability is simulated to demonstrate clearly the significantly improved resolution of the modified
method at low Mach numbers compared to the standard fifth-order method. Finally, two complex three-
dimensional flows are simulated to demonstrate the applicability of the proposed method to unsteady, com-
pressible turbulent flows which have both compressible and incompressible features.

3.1. One-dimensional test cases

3.1.1. Modified Sod shock tube

To demonstrate that the proposed modification does not affect the ability of the scheme to capture shock
waves and contact surfaces the original and modified method have been applied to the Sod shock tube test case
modified to include stationary flow within the rarefaction fan. This modification is used to test the scheme for
unphysical rarefaction shocks when the leading order dissipation is decreased significantly within the fan. The
initial conditions are
ðq; u; pÞL ¼ ð1;�0:5; 1Þ; ðq; u; pÞR ¼ ð0:125; 0; 0:1Þ; c ¼ 1:4 ð26Þ

where the initial discontinuity is placed at x ¼ 0:5. The domain is of length 1 and was discretised using 100
cells. The CFL number was chosen as 1.4, and the results were taken at t ¼ 0:17. Fig. 1 shows the pressure,
density and velocity profiles using both the modified and original limiting methods. The pressure and density
profiles are almost indistinguishable from the original fifth-order scheme. There is only a slight change in po-
sition of the first point in the shock wave and the modified scheme gives sharper profiles at the head and tail of
the rarefaction.

3.1.2. Density layer

The second test case is taken from Klein [10] and is used to validate that the scheme can advect large density
variations at M ¼ 0:02 at very low dissipation, whilst resolving a low wavelength acoustic wave which passes
through the density layer. The initial conditions are defined by
qðx; 0Þ ¼1þ U sinð40px=LÞ þMð1þ cosðpx=LÞÞ; ð27Þ
pðx; 0Þ ¼1þ cMð1þ cosðpx=LÞÞ; ð28Þ
uðx; 0Þ ¼ ffiffiffi

c
p

Mð1þ cosðpx=LÞÞ ð29Þ
and the domain size is �L 6 x 6 L ¼ 1=M where M ¼ 1=51. Finally, the domain is discretised with 1020
points, CFL ¼ 1:4, and c ¼ 1:4. Fig. 2 shows the pressure, velocity and density distributions at time
t ¼ 5:071 for both the original fifth-order scheme and the modified scheme, corresponding to about two
and a half passages of the long wave acoustic perturbation. Again, both modified and unmodified schemes
perform extremely well, the total density variation has been reduced by only 7% compared to the initial ampli-
tude. The total density variation initial and modified scheme vary by only 10�3%. This is far better than the
Superbee results reported in [10] and as good as the low dissipation implicit scheme presented there. This was
the only test case examined here where the modified scheme was less robust than the original scheme, which
would run up to CFL ¼ 1:6.
3.1.3. Noh

The third test case is taken from Noh [11] and consists of two infinite strength shocks moving out from the
centre. This is employed to test the performance of the scheme for very strong shocks. The initial conditions are
ðq; u; pÞL ¼ ð1; 1; 10�6Þ; ðq; u; pÞR ¼ ð1;�1; 10�6Þ; c ¼ 5:=3:; ð30Þ
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Fig. 1. Results from the modified Sod shock tube test case.
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where the initial discontinuity is placed at x ¼ 0:5. The domain is of length 1 and was discretised using 100
cells. The CFL number was chosen as 1.5, and the results were taken at t ¼ 1. Fig. 3 shows the density profiles
using both the modified and original limiting methods. Both original and modified schemes demonstrate excel-
lent shock capturing, however both schemes break symmetry (as do many high order schemes in this test case
(see Liska and Wendroff [12]), and are oscillatory behind the strong shock. Performance in this test case can be
improved by employing TVD time stepping method. This is demonstrated in Fig. 4, which shows the results
gained with the same reconstruction method but employing the third-order TVD Runge–Kutta time stepping
of Gottlieb and Shu [13] at CFL 0.5. The spread of the oscillations away from the centre is significantly re-
duced for both reconstruction methods, with the modified scheme giving the best results in the uniform region
behind the shock.

3.2. Two-dimensional test cases

3.2.1. Single mode Kelvin–Helmholtz

The effective resolution of a numerical scheme can be determined by examining the ability to resolve the a
single mode instability. In this case, an initially small perturbation velocity of one tenth the free stream Mach
number triggers the development of a Kelvin–Helmholtz vortex. It is initialised following [14]



Fig. 2. Results from the density layer test case, left column M5, right column modified scheme M5+LM. The initial conditions are shown
as dashed lines.
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u ¼ oAz

oy
; v ¼ � oAz

ox
; Az ¼

V 0

k
cosðkyÞexp�kjxj; V 0 ¼ 0:1DV ; ð31Þ
where DV is the difference in mean flow velocity V across the mixing layer. In this example DV ¼ 1, hence
v ¼ �DV =2 for �0:5 < x < 0 and v ¼ DV =2 for 0 < x < 0:5. The Mach number, defined by DV =a, is adjusted
by changing the pressure. Density is fixed at q ¼ 1, and c ¼ 5=3. The size of the domain is 1� 1 and is dis-
cretised with 16 cells in each direction. The coarse resolution is deliberately chosen to highlight the scheme’s
ability to capture what would be a high wave number perturbation on a larger grid. It also allows easy dem-
onstration of the low Mach number behaviour of the dissipation of kinetic energy.

Fig. 5 shows the development of the single mode vortex using the original fifth-order method at M ¼ 0:2.
The characteristic rolled up vortex is clearly visible, highlighted by the transport of a passive scalar into the
spirals. It should be noted that this is already a reasonable result – using a second-order limiter such as van
Leer at this grid resolution would give no visible roll-up.

If the Mach number is reduced by increasing the background pressure, then excessive dissipation prevents
growth of the initial instability. Fig. 6 shows the development of the mixing layer at M ¼ 0:02 and 0:002. At
flow Mach numbers of less than 0.2 the perturbation is dissipated, preventing the growth of the instability.
. Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 showing the development of the KH instability at
= 0.2 using scheme M5.

Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 at t = 3 for Mach numbers 0.02 and 0.002 using scheme



Fig. 7. Contour lines at mass fraction 0.1 through to 0.9 with increments of 0.1 using M5+LM at t = 3.
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Applying the low Mach number correction to the velocity jumps improves the resolution of the perturba-
tion, as shown in Fig. 7. At M ¼ 0:2 the vortex roll-up is greater, however, the 0.5 contour line has merged in
the central cells thus creating the ‘kink’ in vortex centre. As Mach ! 0 the spiral structure of the vortex is
perfectly intact and appears to be reaching a relatively Mach number independent structure. At the lowest
Mach number there is a very slight asymmetry in the results, which is due to the use of a small number to
prevent a division by zero in the limiting stage of the calculation.

As pointed out in Guillard et al. [15,5] it is important that the pressure and density fluctuations follow the
correct scaling. They demonstrate clearly that the standard finite volume scheme contains pressure fluctua-
tions of order M, contrary to the incompressible limit which should only support perturbations of order
M2. The relative pressure and density difference are defined as
Dp ¼ pmax � pmin

p
; Dq ¼ qmax � qmin; ð32Þ
and are plotted in Fig. 8 for M ¼ 0:2 to M ¼ 0:0002 at t ¼ 3 for scheme M5+LM. Below Mach numbers of 0.2
the maximum pressure variation follows a M2 scaling as required from incompressible theory, as does the scal-
ing of density variation.
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3.3. Three-dimensional test cases

3.3.1. Homogeneous decaying turbulence

In this section the schemes are tested for the ability to resolve a turbulent flow, where all flow properties
vary continuously throughout the flow field. The canonical numerical test case for which theoretical results
are available for comparison is that of homogeneous decaying turbulence in a periodic cube. From the results
in Section 3.2.1 it is expected that the modified scheme will be significantly less dissipative. This would be a
great advantage as it is well known that Godunov schemes dissipate heavily at high wave numbers [16,17].

The flow field was initialised using a method derived by Youngs and utilised in previous simulations of
decaying turbulence [18,19,17]. The flow field has an initial kinetic energy spectrum given by [20]
EðkÞ ¼ u02 k4

k4
p

ffiffiffiffiffiffiffi
8

k2
pp

s
expð�2ðk=kpÞ2Þ; ð33Þ
where k is the wave number, and the peak in the energy spectrum is defined by changing the peak kp in the
exponential. The peak of the energy spectrum was chosen at kp ¼ 4. To ensure the generation of an almost
non-divergent (i.e. incompressible) velocity field, the velocity is formed from components of a vector potential
A, which satisfies the following relationship:
u ¼ O� A: ð34Þ

As the divergence of a curl is identically equal to zero this gives a non-divergent velocity field. The vector

potential is initialised with a Gaussian distribution of amplitudes and random phases, which is rescaled line-
arly to give a velocity field satisfying
KE ¼ 3

2
u2 ¼ 0:5; ð35Þ

M ¼ u
c
¼ 0:1; ð36Þ
where u is the mean turbulent velocity. The chosen Mach number is low for a Godunov method, and thus it
highlights more clearly the advantages of the modified MUSCL reconstruction proposed. The simulations
were run at 323, 643 and 1283 using both M5 and M5+LM, and the viscous terms were neglected
ðRe ¼ 1Þ. Fig. 9 plots the mean kinetic energy per cell versus time for each grid resolution up to t ¼ 5 which
corresponds to about eight eddy turnover times. At lower grid resolutions the M5+LM scheme resolves more
kinetic energy, and begins decay at a later time, which is a typical feature of increased resolution of the scheme.
Fig. 9d compares the kinetic energy decay rate of the 323 modified scheme with the performance of the 643

scheme showing that the modified scheme behaves very close to the unmodified scheme at double the
resolution.

Three-dimensional kinetic energy spectra have been calculated following [21]
EðkÞ ¼ 2pk2/iiðkÞ; ð37Þ

where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z

q
and the spectrum tensor / is
/ijðkÞ ¼
1

ð2pÞ3
Z 1

�1
QijðrÞe�ikrdr; ð38Þ
where Qij is the second-order velocity correlation tensor. The instantaneous three-dimensional energy spectra
are shown in Fig. 10 for several time instants using both methods at each resolution. The original method
shows the dissipative nature of the unaltered Godunov method for high wave number modes. There is a sig-
nificant improvement in the turbulent spectra at all grid resolutions indicating much higher energy in the high
wave numbers when modifying the velocity increments at low Mach number. The original numerical dissipa-
tion was clearly too high (due to the speed of sound dependence) and thus generated a much larger dissipation
range than desirable when simulating turbulent flow. There is a good match to a k�5=3 spectrum when using the
modified scheme despite there being no subgrid model employed – indicating that the modified scheme is
potentially a good candidate for Implicit Large Eddy Simulation (ILES).
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Fig. 9.
To test the efficacy of the numerical method as a subgrid model, the numerical viscosity is computed in the
form of a numerical spectral eddy viscosity as proposed by Domaradzki et al. [22]. The results of this analysis
can be compared to the theoretically computed eddy viscosity for homogeneous decaying turbulence com-
puted by Chollet [23]. The spectral eddy viscosity of several state-of-the-art Godunov methods have been
examined in [17]. In that paper it was shown that the numerical dissipation of standard schemes was too large
(at the given Mach number, M � 0:1), unless the numerical filter width is chosen to be large relative to the grid
size (approximately one fifth of the maximum wave number on the grid).

The spectral eddy viscosity is computed by analogy to physical viscosity in the dynamic equation for the
evolution of the turbulent kinetic energy spectrum
yKinetic Energy Kinetic energ
o

ot
Eðk; tÞ ¼ �2mk2Eðk; tÞ þ T ðk; tÞ; ð39Þ
where T ðk; tÞ is the transfer function due to the interaction of triads of Fourier modes. An effective numerical
viscosity for inviscid simulations can be defined as
mn ¼
T ðk; tÞ � o

ot Eðk; tÞ
2k2Eðk; tÞ

; ð40Þ
computed numerically following [22]
 1 0 - 31 0 - 2 1 0 - 11 0 01 0 - 2 1 0 - 1 1 0 0M5
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Fig. 10. Instantaneous three-dimensional energy spectra taken at t ¼ 1 to 3 in increments of 0.5, where the highest solid line is the earliest
time. Results for M5 are in the left column, M5+LM in the right column.
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mn ¼
T ðk; tnÞ � ðEðk; tnþ1Þ � Eðk; tn�1ÞÞ=2Dt

2k2Eðk; tnÞ
; ð41Þ
where modes are included in the computation only if the magnitude of the wave vector is smaller than a cut-off
wave number kc. It is normalised using the energy at the cutoff wave number EðkcÞ and kc
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mþn ðkjkcÞ ¼
mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðkcÞ=kc

p : ð42Þ
This is compared to the theoretical result, gained via the test field model and eddy damped quasi-normal
Markovian approximation, fitted by the expression of Chollet [23]
mþn ðkjkcÞ ¼ C�3=2
K 0:441þ 15:2e�3:03kc=k
� �

: ð43Þ
Fig. 11 shows the effective spectral eddy viscosity for the modified and unmodified scheme compared to the
‘ideal’ form. Both methods follow the same qualitative trends, in that they have a plateau at moderate wave
numbers, gradually increasing to a ‘cusp’ at the defined cut-off wave number (in this case half the maximum
wave number on the grid). The modified method provides a much better match to the theoretical result, with a
spectral eddy viscosity between 2 and 7 times less at a given wave number.

3.3.2. Richtmyer–Meshkov mixing

Finally the numerical scheme is applied to a three-dimensional mixing problem where the sharp and accu-
rate treatment of shock waves and contact surfaces is of paramount importance. Richtmyer–Meshkov mixing
is generated when a perturbed interface between two gases is impulsively accelerated, typically by a shock
wave [24,25]. These instabilities first grow linearly and then transition to turbulence and are of importance
in the study of supernovae explosions, wakes of jet engines, combustion chambers and inertial confinement
fusion. This type of interaction is typically at very high Reynolds numbers thus the viscous terms are
neglected.

The test case uses the initial conditions derived by Youngs [26] to examine the influence of initial conditions
on the growth of the resultant mixing layer. The flow field consists a heavy and light gas separated by a per-
turbed interface, where the perturbation satisfies a given power spectrum and mean amplitude. The incident
shock wave is of M ¼ 1:84, equivalent to a four-fold pressure increase across the shock wave. The domain
chosen is of size ½0; 0; 0� � ½2:4p; 2p; 2p�, where additional length is given in the x-direction to allow for
growth of the mixing layer. The initial conditions are
x < 2:3 ðq; u; pÞ ¼ ð6:375;�61:4875; 4� 105Þ; ð44Þ
2:3 < x < 3:35þ n ðq; u; pÞ ¼ ð3:0;�291:575; 105Þ; ð45Þ
3:35þ n < x ðq; u; pÞ ¼ ð1:0;�291:575; 105Þ; ð46Þ
where an initial velocity is given to the material interface such that the centre of the interface is stationary after
passage of the shock wave. The ratio of specific heats, c, is set to 5/3. The initial interface perturbation n is
k/kc

ν+ n
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Fig. 11. Effective spectral eddy viscosity for the 643 simulation, where kc ¼ 16.
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given as the sum of modes of random phase conforming to an initial power spectrum P / c=k2. The modes
excited are restricted between kmin ¼ 16Dx and kmax ¼ 2p=3 and the standard deviation of the perturbation
amplitude is 0:1kmin. Fig. 12 shows the isosurface of mass fraction Y 1 ¼ 0:5 at t ¼ 0, illustrating the nature
of the perturbation. The grid size employed is 360� 300� 300 and simulations were run with both the original
M5 limiter and modified M5+LM scheme at CFL ¼ 0:75.

Once the shock wave has passed, the maximum Mach number within the mixing layer is approximately
0:25 and decreases with time, thus the standard boundary conditions utilised in a compressible code can-
not be applied in the x direction. To prevent excessive reflection of the incident and reflected shock wave,
an extended one-dimensional domain is employed as inlet and outlet conditions in the x direction. This
does not completely eliminate the reflected wave as this is impossible where the mesh size changes (see
[27]), but reduces the magnitude of the reflected wave to 0.03% of the initial velocity, which is then trans-
mitted without reflection through the inlet boundary condition. In the y and z direction periodic bound-
aries are applied. Note that in the following discussion all length scales are non-dimensionalised by kmin,
time scales by kmin and Du ¼ 291:575 (the initial velocity impulse applied to the interface by the shock
wave).

Fig. 13 shows three time instances in the development of the mixing layer for each scheme. The large scale
structures are in similar locations in both of the schemes, however, it is clear that there is significantly
improved resolution of fine scale features, as expected from the previous test cases. Fig. 14 shows a plane slice
of the domain showing contours of mass fraction at t ¼ 240 for both numerical schemes, further highlighting
the increased resolution of the modified scheme.

Next the growth of the mixing layer is examined. It is expected that the mixing layer integral width, defined
as
W ¼
Z

x

�f 1
�f 2 dx; ð47Þ
where f1 and f2 are the volume fractions of the two gases, should grow as th. Theoretical analysis suggests that
at late times h � 1=3� 2=3 [28–30]. Fig. 15 shows the non-dimensional mixing layer width. The lines of best fit
show h � 0:35 for the original scheme and h � 0:38 for the modified scheme, in reasonable agreement. The
increased resolution of fine scale structure does not significantly affect the integral mixing layer width, which
Fig. 12. Iso-surface of mass fraction Y 1 ¼ 0:5 illustrating the initial condition for the Richtmyer–Meshkov test case.



Fig. 13. Iso-surface of mass fraction Y 1 ¼ 0:05; 0:5 and 0.95 showing the time development of the turbulent mixing layer. Results for M5
are in the left column, M5+LM in the right column.
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is to be expected as simulations with single mode perturbations demonstrate that the mixing layer width can
usually be captured on a very coarse grid [31].

Finally, the two-dimensional turbulent kinetic energy spectra has been calculated in the y � z plane (parallel
to the initial interface) and averaged over 10 slices in the x direction (direction of shock propagation). Each
spectra is computed for a slice 256 by 256 and the 10 slices are symmetric across the centre of the mixing layer.
Fig. 16 compares the spectra obtained using the two numerical methods at several time instances during the



Fig. 14. Contour flood of mass fraction at t ¼ 240 illustrating the fine scale structures present.
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decay of turbulent kinetic energy. A k�3=2 line has been plotted on the charts which is the theoretical form of
the turbulent kinetic energy spectra determined by extending the Kolmogorov–Kraichnan phenomenology to
take into account the ‘driven’ nature of the turbulent mixing zone [29].

There is an excellent match between the theoretical result and the M5+LM scheme between 8 < k < 100,
indicating that excess dissipation at low Mach number effectively removed small perturbations from the ori-
ginal fifth-order scheme thus preventing development of a fully turbulent flow regime. This is an excellent
result, especially considering the lack of an explicit subgrid model, and a huge improvement on the original
scheme. To the author’s knowledge, such a large inertial range has not been seen in simulations less than
10243 [32] with other high resolution schemes. Further analysis as regards the form of the effective subgrid
model in this case is a subject of ongoing work. It could be suggested that there is a short inertial range present
for 8 < k < 20 for the original scheme, however, at such low wave numbers there is only a small statistical
sample, thus any power law dependence is masked by statistical fluctuations. There is a slight up-turning of
the spectra at high wave numbers when using the modified method, indicating that the level of numerical dis-
sipation is slightly lower than ideal for a sub-grid model for this application.

Such a large influence of the low Mach number correction on the high wave numbers is surprising. If it is
assumed that the turbulent kinetic energy spectra conforms to a k�3=2 form, then the characteristic velocity for
a given wave number falls as k�1=4. Assuming the peak of the spectrum is at k ¼ 4, for k ¼ 100 the mean
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velocity would be approximately 0.4 of the peak velocity, which is not an excessively low Mach number in this
test case ðM � 0:1Þ. Thus, the simulations have demonstrated that the seed instabilities resulting in such a
spectrum are at a Mach number much less than the characteristic Mach number of the modes resolved on
the grid assuming an inertial range form to the grid cut-off. These instabilities are damped at a very early stage
in their growth by the original fifth-order method.

4. Conclusions

This paper has presented a simple modification of the finite volume Godunov method to significantly
improve performance at low Mach number and in turbulent flows. It is shown analytically and through
numerical test cases that the dissipation of the numerical scheme becomes constant in the limit of zero Mach
number, as opposed to tending to infinity as is the case for the traditional scheme. In addition, this modifica-
tion recovers the correct scaling of the pressure and density fluctuations as Mach number decreases. The key
feature of the numerical scheme is that the reconstruction is modified locally, hence the scheme can capture
both shock waves and low Mach number features in the same computational domain using the same formu-
lation of the governing equations. The numerical modification adds negligible computational cost.

This paper has presented the results from applying such a modification to a standard Godunov-type
method, however, in principle there is no reason why equivalent results would not be gained in a wider class
of fully compressible schemes which rely on reconstruction of the conserved or primitive variables at the cell
interface.
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Appendix A. Mathematica script

This appendix details the Mathematica script used to computed the change in entropy over a single time
step using van Leer extrapolation in a flow field where velocity varies, but pressure and density are locally
constant.
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(*Initial Conditions for interface i + 1/2 and soln of RP using the Taylor series

expansion of the van Leer limited velocities*)
pr = P[x];
pl = P[x];
ur = U[x] + dx U0[x]/2 + dx

^
2U00[x] � dx

^
4 U0000[x]/720 + dx

^
5 U000 00[x]/60;

ul = U[x] + dx U0[x]/2 + dx
^
2U00 [x] � dx

^
4 U00 00[x]/720 � dx

^
5 U00000[x]/60;

rr = R[x];
rl = R[x];
psp = (pr + pl)/2 + (ul � ur)(rr + rl) a/4;
usp = (ur + ul)/2 + (pl � pr)/((rr + rl) a);
rsp = rl + (ul � usp) (rr + rl)/2/a;

(*Initial Conditions for interface i � 1/2 and soln of RP using the Taylor series

expansion of the van Leer limited velocities*)
prm = P[x];
plm = P[x];
urm = U[x] � dx U0[x]/2 + dx

^
2U00[x] � dx

^
4 U00 00[x]/720 + dx

^
5 U000 00 [x]/60;

ulm = U[x] � dx U0[x]/2 + dx
^
2U00[x] � dx

^
4 U000[x]/720 � dx

^
5 U000 00[x]/60;

rrm = R[x];
rlm = R[x];
psm = (prm + plm)/2 + (ulm � urm)(rrm + rlm)a/4;
usm = (urm + ulm)/2 + (plm � prm)/((rrm + rlm) a);
rsm = rlm + (ulm � usm) (rrm + rlm)/2/a;

(*Compute conservative variables at the next time step*)
u1 = R[x] + v (rsm usm � rsp usp);
u2 = R[x] U[x] + v (rsm usm

^
2 + psm � rsp usp

^
2 � psp);

u3 = P[x]/(g � 1) + R[x] U[x]
^
2/2 + v((psm g/(g � 1) + rsm usm

^
2/2)

usm � (psp g/(g � 1) + rsp usp
^
2/2)usp);

{*Calculate primitive variables at the next times step*)
r1 = Simplify[Expand[u1]]

u1 = Simplify[Expand[u2/u1]]

e1 = Simplify[Expand[u3]]

p1 = (g � 1)(e1 � 1/2 r1 u1
^
2)

(*Calculate the entropy change and multiply by temperature*)
ln = p1/r1

^
g ((rl)

^
g/(pl));

ds = RGAS/(g � 1)(ln � 1);
Tds = ds a

^
2/(g RGAS);

(*Substitute speed of sound instead of pressure p, and substitute dt for dx, CFL

and a*)
Tds2 = Tds/. p -> r a

^
2/g;

Tdsodt = Collect[Tds2/dt/. v -> dt/dx/. dt -> dx CFL/a, a];

To compute the entropy increase due to spatial discretisation, then it is necessary to repeat the above anal-
ysis for the exact Taylor series expansion of the cell average quantities to the cell interface, and then subtract
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the entropy rise with the exact from the entropy rise of the M5 interpolated method. To analyse the modified
scheme simply substitute in the following lines before computing the solution of the Riemann problem:

sum = (ur + ul)/2

diff = (ur � ul)sum/(2 a)

ur = sum + diff

ul = sum � diff
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